
CHAPTER 4

HF FILTERS



4-2
TYPES OF HF FILTERS

Among the multiple ways of making filters, only the following are 
useable for HF (3 MHz to 30 MHz) and VHF (30 MHz to 300 
MHz):

1) LC filters;
2) Continuous time gm-C filters;
3) Mechanical filters;
4) Ceramic filters;
5) Quartz filters;
6) Surface Acoustic Wave (SAW) filters.

With the exception of gm-C filters, all these filters are realized 
with discrete components. The gm-C filters are the only ones 
that can be integrated on a chip while maintaining good enough 
performance at high frequency (< 300 MHz).
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4-3
ATTENUATION, PHASE, AND GROUP DELAY

A filter is a linear circuit that discriminates between different 
frequencies. The frequencies that are not affected by the filter 
make up the passband, while the attenuated frequencies make up 
the stopband. Since the filter is linear, the transfer function 
can be defined:

(4.1)

where zk are the transmission zeros, pk are the transmission 
poles and φ(ω) is the phase shift. The input and output signals 
are generally voltages, but more rarely currents. It is common in 
filter theory to use attenuation, defined by: 

(4.2)

which thus corresponds to the log of the inverse of the transfer 
function. The values ωk for which  are the attenua-
tion zeros and the frequencies ωk for which  are the 
attenuation poles, which correspond to the transmission zeros 
situated on the imaginary axis. 
In certain cases, the filter has a phase shift corresponding to a 
certain constant delay for the passband frequencies. We then 
specify the group delay by: 

(4.3)
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4-4
CLASSES OF TRANSFER FUNCTIONS

Filters can be classified according to their attenuation charac-
teristics:

1) Low-Pass Filter = LPF;
2) High-Pass Filter = HPF;
3) Band-Pass Filter = BPF;
4) Band-Reject Filter = BRF.

Diagrams of these four types of attenuation characteristics are 
presented in Fig. 4-1.

Each of these characteristics contains one or several passbands 
and stopbands, separated by transition bands in which the atten-
uation varies. The narrower these transition bands, the more 
selective the filter. This requires a high-order transfer function 
and implies a complex realization and high cost. 

Fig 4-1: The principal attenuation characteristics.
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4-5
FILTER SPECIFICATIONS

Within the set of specifications of a filter, such as the dimen-
sions, the power consumption, the functional temperature range, 
etc., the most important is certainly the specification of the 
attenuation characteristics or in certain cases the group delay. 
This is usually done given the attenuation or group delay toler-
ance limits (cf Fig. 4-2). It is useful to remember that the 
attenuation characteristics and the phase shift cannot be speci-
fied independently so that the causality of the filter is assured. 

a) Attenuation vs. frequency specifications.

b) Group (phase) delay specifications.
Fig 4-2: Different specifications of a filter.
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4-6
NORMALIZATION AND LOW-PASS PROTOTYPE 

The design of a filter can be broken into two steps: the approxi-
mation step followed by the realization (or implementation). The 
approximation step involves the search for a transfer function 
that satisfies the imposed specifications, while the realization 
step involves the synthesis of a circuit (either active or passive) 
having the transfer function defined during the approximation 
step. In the case in which the specification is simple (constant 
and equal attenuation in the stopbands), tabulated analytical 
approximations can be used. These tables generally correspond 
to a low-pass filter with a stopband normalized to 1 rad/s 
(cf Fig. 4-3).

These tables can also be applied to high-pass, band-pass, or 
band-reject filter design, by using the appropriate frequency or 
circuit transformations.

Fig 4-3: Normalized tolerance plot.
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4-7
LOW-PASS ↔ HIGH-PASS TRANSFORMATION

It is easy to transform a low-pass filter to high-pass by the sim-
ple inversion of the frequency axis, which corresponds to the 
following frequency transformation:

(4.4)

where Ω is the normalized frequency corresponding to the low-
pass prototype (LPP) filter and ω is the frequency of the high-
pass (HP) filter to be realized, expressed in rad/s. The low-pass 
prototype filter is simply obtained by carrying out the transfor-
mations indicated in Fig. 4-4.

Circuit transformations correspond to this frequency transfor-
mation. In particular, for LC filters, the (denormalized) high-
pass filter is obtained by applying the transformation rules 
shown in Fig. 4-5.

Fig 4-4: Obtaining the LPP from the HP tolerance plot.

a) Low-pass prototype filter. b) Denormalized high-pass filter. 
Fig 4-5: Transformation of elements of the LPP filter.
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4-8
LOW-PASS ↔ BANDPASS TRANSFORMATION (1/4)

In the case in which the tolerance plot of a bandpass filter spec-
ifies a constant and equal attenuation in the stopbands, the 
transformation low-pass ↔ bandpass can be used:

(4.5)

where  is the Laplace variable in the domain of the low-
pass prototype filter and  is the Laplace variable in the 
domain of the bandpass filter. Eqn. 4.5 transforms the fre-
quency  to , which is then the center frequency 
of the bandpass filter. The frequencies  are trans-
formed to two positive frequencies  
such that:

(4.6)

This signifies that each frequency of the tolerance plot of the 
low-pass prototype filter corresponding to a given attenuation is 
transformed to two frequencies having the same attenuation and 
located according to geometrical symmetry around the center 
frequency. In addition, the passband edges transform into two 
frequencies  and therefore:

(4.7)

where B is the filter bandwidth (in rad/s). The frequencies 
 map into two positive frequencies ωs1 and ωs2 such 

that:

(4.8)

These properties of the low-pass ↔ bandpass transformation 
are illustrated in an example in Fig. 4-6. The method to obtain 
the tolerance plot of the LPP from the bandpass filter specifica-
tions is described on page 4-10.
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4-9
LOW-PASS ↔ BANDPASS TRANSFORMATION (2/4)

Fig 4-6: Low-pass ↔ bandpass transformation.
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4-10
LOW-PASS ↔ BANDPASS TRANSFORMATION (3/4)

Consider the tolerance plot of the bandpass filter shown in 
Fig. 4-7 a).

In order to be able to apply the low-pass ↔ bandpass transfor-
mation, the tolerance plot must be modified as follows: 

1) The attenuation in the stopbands must be leveled to the 
maximum attenuation (cf Fig. 4-7 b));

2) The stopband edges must be modified such that they sat-
isfy the geometric symmetry property of the transfor-
mation. To do this, we first calculate the center 
frequency  and then evaluate 

. If , the stopband edges are ωs1 
and ω2 . If , we must calculate  
and define the stopband edges as ω1 and ωs2 .

We can now derive the tolerance plot of the low-pass prototype 
(LPP) filter by remarking that the attenuations Ap and As remain 
unchanged, while the frequency Ωs is given by:

(4.9)

a) b) 
Fig 4-7: Modification of the initial tolerance plot of the band-

pass filter for the establishment of the specifications of 
the low-pass prototype filter.
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4-11
LOW-PASS ↔ BANDPASS TRANSFORMATION (4/4)

The low-pass ↔ bandpass transformation described by Eqn. 4.5 
corresponds to a reactance transformation that can be directly 
applied to an LC filter. Knowing the center frequency ω0 and the 
bandwidth B of the bandpass filter, one can then replace the 
inductors by series resonant circuits and the capacitors by par-
allel resonant circuits, all tuned to the same resonant frequency 
ω0 expressed in rad/s.

a) Transformation of an inductor (normalized).

b) Transformation of a capacitor (normalized).

c) Transformation of a third-order all-pole filter.
Fig 4-8: Application of the low-pass ↔ bandpass transforma-

tion.
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4-12
TYPES OF APPROXIMATIONS

There are several types of approximations, each having their 
own features. The best-known are:

1) The Butterworth approximation: offers a very flat atten-
uation in the passband with a monotonically increasing 
attenuation in the stopband. The transition from the 
passband to the stopband is controlled. The phase char-
acteristic is nonlinear, and the group delay has a bump at 
the passband edge.

2) The Chebyshev approximation: offers a more rapid transi-
tion from the passband to the stopband than the Butter-
worth, but has ripples in the passband. The attenuation 
increases monotonically in the stopband. The phase char-
acteristic is highly nonlinear and the group delay has 
peaks at the passband edge.

3) The Bessel approximation: offers a linear phase delay and 
therefore a constant group delay in the passband. How-
ever, the transition from the passband to the stopband is 
very gradual.

4) The Cauer or Elliptic approximation: offers a very steep 
transition from the passband to the stopband, but has 
ripples in the passband as well as the stopband. The phase 
characteristic and the group delay are highly nonlinear 
and rippled.
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4-13
BUTTERWORTH APPROXIMATION (1/3)

The Butterworth function is certainly the simplest of the ana-
lytical approximations. The typical shape of the Butterworth 
transfer function is shown in Fig. 4-9.

The magnitude of the Butterworth transfer function of order N 
and the corresponding attenuation are given respectively by: 

(4.10)

(4.11)

where  is the frequency normalized to the cutoff fre-
quency ωp which is the frequency which corresponds to an atten-
uation Ap . In the particular case where , ωp corresponds 
to the frequency at –3 dB ( ). The parameter ε is thus 
determined by the maximum variation of the attenuation toler-
ated in the passband, given Ap:

(4.12)

Fig 4-9: Magnitude of the Butterworth transfer function.
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4-14
BUTTERWORTH APPROXIMATION (2/3)

The function given by Eqn. 4.10 is plotted for  and for dif-
ferent values of N in Fig. 4-10.

It can be shown that the 2N–1 derivatives of Eqn. 4.10 with ω
cancel out at the origin, which explains the increasingly flat 
appearance of the characteristics near the origin when the fil-
ter’s order increases. The order of the filter that satisfies a 
certain tolerance plot can be determined by noting that the 
attenuations at the passband and stopband edges are given by: 

(4.13)

from which one gets the minimum value of the order N that sat-
isfies the tolerance plot:

(4.14)

If the expression on the right side of Eqn. 4.14 is not a whole 
number, we must choose the next highest whole number.

Fig 4-10: Magnitude of the transfer function for .
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4-15
BUTTERWORTH APPROXIMATION (3/3)

It can be shown that the poles of the transfer function H(Ω)
are located on a circle as indicated in Fig. 4-11.

The complex conjugate poles can be grouped by pairs, and the 
transfer function can be factored into a product of a possible 
1st degree function and 2nd order functions each having the 
same normalized resonant frequency Ω0 and quality factors Qk
given by:

(4.15)

The procedure for synthesizing a Butterworth filter is summa-
rized below:

1) Normalize the tolerance plot by dividing the frequency by 
the filter’s cutoff frequency. This permits Ωs to be 
determined;

2) Determine the order according to Eqn. 4.14;
3) Calculate the value of ε using Eqn. 4.12.

Fig 4-11: Poles of the Butterworth transfer function in the nor-
malized s plane (7th order).
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4-16
CHEBYSHEV APPROXIMATION (1/3)

Fig. 4-12 shows the typical shape of the magnitude of the trans-
fer function of even-order and odd-order Chebyshev filters. In 
contrast with the Butterworth filter, the Chebyshev filter has 
ripples in the passband, followed by a monotonic decrease in the 
stopband. Notice that the number of maxima and minima in the 
positive passband corresponds to (N+1) where N is the order of 
the filter.

The transfer function is given by:

(4.16)

(4.17)

where  is the Chebyshev polynomial of order N defined 
by:

(4.18)

Fig 4-12: Typical transfer function shapes for a Chebyshev filter.
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4-17
CHEBYSHEV APPROXIMATION (2/3)

These polynomials satisfy the following recursive formula: 

(4.19)

The first polynomials given below are shown in Fig. 4-13.

(4.20)

The attenuation of a Chebyshev filter of order N at the stop-
band edge is given by:

(4.21)

Which gives: (4.22)

Fig 4-13: Chebyshev polynomials.
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4-18
CHEBYSHEV APPROXIMATION (3/3)

The right side of Eqn. 4.22 is constant for a given order N and 
value Ωs. Once the order has been chosen, the attenuation can 
be split up between the two left-hand terms of Eqn. 4.22 
according to the specifications. An increase of the attenuation in 
the stopband implies an increase of ε and therefore of the ripple 
in the passband. Eqn. 4.22 is represented in Fig. 4-14. Knowing 
Ap , As and Ωs , the chart in Fig. 4-14 can be used to determine 
the order necessary to satisfy the tolerance plot.

The order necessary to satisfy the tolerance plot can also be 
determined by using the following formula: 

(4.23)

Fig 4-14: Chart for choosing the Chebyshev filter order.
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4-19
COMPARISON OF BUTTERWORTH AND CHEBYSHEV 
APPROXIMATIONS

Fig 4-15: Comparison of the attenuation of 3rd order Butter-
worth and Chebyshev filters.
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4-20
ALL-POLE LOW-PASS LC FILTER (1/3)

For both Butterworth and Chebyshev approximations, there are 
direct relationships between the values of the reactive compo-
nents and the characteristic parameters ε and N for the low-
pass prototype filters in Fig. 4-16 and 4-17. In general, we would 
choose one of the filters with the minimum number of inductors 
in Fig. 4-16.

a) Even-order (N even).

b) Odd-order (N odd).
Fig 4-16: All-pole low-pass LC filters with minimum inductors.

a) Even-order (N even).

b) Odd-order (N odd).
Fig 4-17: All-pole low-pass LC filters with minimum capacitors.
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4-21
ALL-POLE LOW-PASS LC FILTER (2/3)

Butterworth

For the Butterworth approximation, the values of the reactive 
elements (capacitors et inductors) of the filters in Fig. 4-16 hav-
ing equal resistive terminations equal to 1 Ω and a cutoff fre-
quency ωp equal to 1 rad/s, are simply given by:

(4.24)

Note that Eqn. 4.24 is only valid for filters with identical termi-
nations . The values calculated from Eqn. 4.24 
are tabulated in Table 4-1 for . For the case in which 

, it is necessary to use Table 4-2.

Table 4-1: Butterworth prototype filter ( ) and ωp 
= 1 rad/s.
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4-22
ALL-POLE LOW-PASS LC FILTER (3/3)

Chebyshev

The relationships for a Chebyshev approximation are a little 
more complicated. First we must determine the constants h and 
ξ using the value of ε:

 (4.25)

The cutoff frequency ωp is equal to 1 rad/s. The values of the 
reactive elements are then given by:

(4.26)

(4.27)

(4.28)

The calculation must begin with Eqn. 4.26 if we have the value of 
RS or in the reverse order, that is to say with Eqn. 4.28 if we 
have the value of RL. Note that contrary to Butterworth filters, 
where the terminations can be identical, in the case of even-
order Chebyshev filters, they must be different. The element 
values are tabulated in Tables 4-3 to 4-6 for different ripple 
values in the passband.
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4-23
EXAMPLE: CALCULATION OF A THIRD-ORDER 
CHEBYSHEV PROTOTYPE FILTER 

We would like to find the values of the reactive elements of a 
3rd order Chebyshev filter having a ripple in the passband of 
less than 0.1 dB, a cutoff frequency of 1 rad/s and a source 
resistance .
From Eqn. 4.12 we get . From Eqn. 4.25 we have 

 and . Knowing that , we can 
calculate C1 from Eqn. 4.26:

From which:

From which:

Note that according to Eqn. 4.28, RL is equal to RS.

Fig 4-18: Example of the calculation of a 3rd order Chebyshev 
prototype filter.
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4-24
SURFACE ACOUSTIC WAVE (SAW) FILTERS (1/2)

Surface Acoustic Waves (SAWs) are a special type of elastic 
wave that propagates along discontinuities such as the free sur-
face of a solid (or the separation surface between two different 
elastic media). They were discovered theoretically by Lord 
Rayleigh, in 1885, during his studies of earthquakes. The ampli-
tude of the mechanical deformations decreases exponentially 
inside the solid when getting farther from the surface such that 
the mechanical energy carried by the wave is confined, in a 
region about the thickness of the wavelength λ, under the sur-
face (cf Fig. 4-19).

These waves, nondispersive, are characterized by slow propaga-
tion (average speed v = 3 km/s) and a generally weak attenuation 
(on the order of 10-4 dB/λ, i.e. 0,01 dB/µs for lithium niobate YZ 
at 100 MHz).
Since the signals to be filtered are usually electrical, the use of 
elastic phenomena requires transformations from mechanical 
energy to electrical energy and vice versa. Piezoelectric crystals 
in which there is a natural coupling between elastic and electrical 
phenomena are thus the material used. Indeed, if the substrate 
is piezoelectric, the deformations produced by the elastic wave 
induce local electric fields, which accompany the mechanical 
wave during its propagation. The electric field interacts with all 
the metal electrodes placed on the surface, which can also be 
connected to exterior circuits.

Fig 4-19: Propagation of a surface wave.
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4-25
SURFACE ACOUSTIC WAVE (SAW) FILTERS (2/2)

The surface waves are generated and detected with transducers 
made of interdigitated metallic combs deposited on the sub-
strate (cf Fig. 4-20 a)). The classic technology uses photolithog-
raphy of a thin metallic layer, usually aluminum about 2000 Å 
thick, deposited on a polished monocrystal: one single mask level 
is usually enough and the fabrication yield is excellent.

The surface acoustic wave filter corresponds to the transversal 
filter (FIR filter) whose diagram is shown in Fig. 4-20 b). The 
delay  is due to the spacing between each finger of the trans-
ducers, and the weighting factor A of the delayed signal is 
determined by the length W of each finger.

a) Setup of a SAW filter.

b) Corresponding transversal filter.
Fig 4-20: Diagram of a SAW filter.

tΔ
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4-26
TRANSFER FUNCTION OF A SAW FILTER

For a regular comb, the elastic excitations due to different fin-
ger pairs add together to give a synchronous frequency 

. If the frequency moves away from this value, the 
interference is no longer completely constructive and the result-
ing signal diminishes: the passband of a regular transducer is 
narrower when it has more fingers. If N is the total number of 
fingers, the frequency response is given by: 

(4.29)

Other responses can be obtained either by changing the ampli-
tude by appropriately weighting finger length (apodization) 
(cf Fig. 4-21 a)), or by changing the phase by weighting finger 
spacing (cf Fig. 4-21 b). 

The global transfer function is equal to the product of the rela-
tive functions of the emitter and receiver transducers. If one of 
the transducers has few fingers (meaning a wide passband), the 
transfer function is determined uniquely by the design of the 
other. In addition, if the second transducer with uniform aper-
ture has few fingers, it will have high insertion loss. If the 
number of fingers increases, its frequency response, in sin x/x, 
will “round out” the global response of the filter. The use of two 
apodized transducers complicates the problem of synthesis.

Fig 4-21: Weighting the impulse response.
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4-27
TRANSDUCER EQUIVALENT CIRCUIT

The equivalent circuit of a transducer is shown in Fig. 4-22. The 
input admittance of the transducer (within the dotted lines of 
Fig. 4-22) is composed of three parallel elements given by:

(4.30)

with: (4.31)

where k2 is the electromechanical coupling coefficient of the 
piezoelectric material, ε its permittivity and W the length of the 
transducer fingers. Two parasitic elements have been added: the 
resistance r of the electrodes and the capacitance Cp associated 
with the setup.

Fig 4-22: Transducer equivalent circuit.
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REFLECTIONS AND INSERTION LOSSES

Secondary effects change the ideal response of interdigitated 
transducers. The most important are related either to diffrac-
tion, the waveform spreading out if its opening is too small, or to 
reflections from the crystal edges and particularly from the 
other electrodes. Intratransducer reflections can be minimized 
by using double-finger electrodes, in which each finger is 
replaced by a pair of fingers of thickness λ/8 instead of λ/4 
(cf Fig. 4-23).

The reflections from the two ports, due to the regeneration of 
elastic waves by the voltage created on the transducer elec-
trodes, cause “triple transit” echoes that are as strong as the 
losses are weak. This effect can be reduced by slightly changing 
the device so that the insertion losses are equal or greater than 
20 dB or by using double or unidirectional multiphased transduc-
ers at the price of a reduced bandwidth. 
The insertion losses of surface acoustic wave filters stem mainly 
from the bidirectionality of the transducers and from the elec-
trical mismatching, but also, especially at high frequency, from 
the parasitic resistance of the fingers and from the propagation 
losses in the substrate. In addition, by tolerating reasonable 
losses, one can only obtain, from a given material, a limited rela-
tive passband , on the order of k, the square root of the 
electromechanical coupling coefficient.

Fig 4-23: Reduction of intratransducer reflections.
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LIMITS AND APPLICATIONS OF SAW FILTERS

Under 10 MHz, crystal dimensions lead to filters with modest 
performance. Above 1 GHz, major technological problems arise. 
But it is in the VHF and UHF ranges that SAW filters are the 
most advantageous. Limited by the dimensions of the crystals 
(several cm), the transition band of transversal filters remains 
higher than 100 kHz. It can be reduced by the use of resona-
tors. It is difficult to give characteristic numbers, for insertion 
losses or for ripples in the band, because performance varies 
enormously both with the quality of the design and realization 
and also as a function of the filter design specifications. Thus a 
narrow-band filter can have just 2 or 3 dB of losses if the unidi-
rectional structure is realized well, while a wide-band filter with 
small ripples in the band will have insertion losses of about 20 
dB. A major advantage of SAW filters is that they don’t require 
any frequency adjustment. 
They are commonly used to realize the IF filters in TV receivers 
(cf Fig. 4-24).

Fig 4-24: Response of a SAW filter for IF TV.
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OTHER SAW FILTER STRUCTURES

The preceding description of surface wave filters implies an 
ideal model in which the waves propagate freely, without reflec-
tion. In practice, we seek to design devices in which these condi-
tions are roughly satisfied. Nevertheless, there is another 
approach in which the deviation from the model of free waves is 
deliberately emphasized in order to take advantage of these 
effects.
The surface motion reflects from mechanical and electrical dis-
continuities. If we exclude the reflections from the crystal 
boundaries, difficult to control and usually avoided by using an 
absorber (cf Fig. 4-20), we mostly use reflections from arrays:

a)arrays of mechanical grooves: Regular grooves can be 
etched by ions on a crystal surface; an array made of ZnO 
or silica, or even metal can also be deposited. Thus, each 
line of discontinuity will be the source of a reflected wave-
let. If the reflected wavelets from the different lines are 
in phase, the effect will be cumulative. 

b)conductor arrays: Reflections from arrays of conductors 
are more subtle. The incident waves induce a current in the 
conductors, which then behave as transducers whose exci-
tation is caused by the incident wave. The waves re-emit-
ted in this way by the transducer are interpreted as 
“electrically” reflected (or diffused) waves. The amplitude 
of this diffusion depends strongly on the load: open circuit, 
short circuit, matched circuit, etc. One can even obtain a 
re-emission that is geometrically separated from the inci-
dent wave, which leads to multiple band couplers.
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SAW RESONATOR FILTERS

By placing two transducers inside a surface wave cavity closed 
by two reflectors of one of the types decribed above, we obtain 
a resonator filter.

We can thus achieve quality factors on the order of 10’000. It is 
also possible to place the transducers outside the cavity, which 
makes their position less critical but increases insertion losses. 
We can also couple multiple cavities, for example by using multi-
ple-band couplers, but this process is rarely used for more than 
two cavities. 

MULTISTRIP ARRAY FILTERS
A multiple band coupler placed astride over an input track and an 
output track has the simple effect of shifting the phase of the 
piezoelectric waves. On the other hand, if the pitch of the array 
is modulated on both tracks, we get a selective reflection at cer-
tain frequencies, which allows the realization of electric diffu-
sion filters. We can also use this procedure by reversing the 
propagation direction with reflection (MRA or multistrip reflec-
tive array) or on the contrary, by preserving the propagation 
direction with transmission (MTA or multistrip transmissive 
array).

Fig 4-25: Example of a SAW resonator filter.
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REFLECTIVE ARRAY COMPRESSOR SAW FILTERS

Fig. 4-26 represents a double-reflection filter on two etched 
arrays, turned approximately 45° from the axis of propagation 
of the input and output waves. This process is very convenient 
for realizing dispersive filters (used in modern radar) in which 
the bandwidth x transmission time product reaches 104. A simi-
lar process which uses points instead of grooves has also been 
proposed.

ACTIVE SAW FILTERS
Finally, we would like to point out the possibility of looping back a 
line of surface waves on itself through an amplifier which almost 
completely compensates the losses. We thus obtain extremely 
narrow-band filters (overvoltage = several 104) that can be made 
tunable by inserting an electronic phase-shifter in the loop.

Fig 4-26: Reflective array dispersive filter.
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Table 4-2: Butterworth prototype filter ( , ).RS RL≠ ε 1=
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Table 4-3: Chebyshev prototype filter (Ap ≤ 0.01 dB).
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Table 4-4: Chebyshev prototype filter (Ap ≤ 0.1 dB).
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Table 4-5: Chebyshev prototype filter (Ap ≤ 0.5 dB).
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Table 4-6: Chebyshev prototype filter (Ap ≤ 1 dB).
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	HF filters
	types of Hf filters
	1) LC filters;
	2) Continuous time gm-C filters;
	3) Mechanical filters;
	4) Ceramic filters;
	5) Quartz filters;
	6) Surface Acoustic Wave (SAW) filters.

	Attenuation, phase, and group delay
	A filter is a linear circuit that discriminates between different frequencies. The frequencies that are not affected by the filter make up the passband, while the attenuated frequencies make up the stopband. Since the filter is linear, the transfer f...
	(4.1)
	(4.2)
	(4.3)

	Classes of transfer functions
	Filters can be classified according to their attenuation characteristics:
	1) Low-Pass Filter = LPF;
	2) High-Pass Filter = HPF;
	3) Band-Pass Filter = BPF;
	4) Band-Reject Filter = BRF.
	Fig 4-1: The principal attenuation characteristics.


	filter specifications
	Within the set of specifications of a filter, such as the dimensions, the power consumption, the functional temperature range, etc., the most important is certainly the specification of the attenuation characteristics or in certain cases the group de...
	Fig 4-2: Different specifications of a filter.

	Normalization and low-pass prototype
	The design of a filter can be broken into two steps: the approximation step followed by the realization (or implementation). The approximation step involves the search for a transfer function that satisfies the imposed specifications, while the reali...
	Fig 4-3: Normalized tolerance plot.

	low-pass « high-pass Transformation
	It is easy to transform a low-pass filter to high-pass by the simple inversion of the frequency axis, which corresponds to the following frequency transformation:
	(4.4)
	Fig 4-4: Obtaining the LPP from the HP tolerance plot.
	Fig 4-5: Transformation of elements of the LPP filter.

	low-pass « bandpass Transformation (1/4)
	In the case in which the tolerance plot of a bandpass filter specifies a constant and equal attenuation in the stopbands, the transformation low-pass « bandpass can be used:
	(4.5)
	(4.6)
	(4.7)
	(4.8)

	low-pass « bandpass Transformation (2/4)
	Fig 4-6: Low-pass « bandpass transformation.

	low-pass « bandpass Transformation (3/4)
	Consider the tolerance plot of the bandpass filter shown in Fig. 4-7 a).
	Fig 4-7: Modification of the initial tolerance plot of the bandpass filter for the establishment of the specifications of the low-pass prototype filter.
	1) The attenuation in the stopbands must be leveled to the maximum attenuation (cf Fig. 4-7 b));

	2) The stopband edges must be modified such that they satisfy the geometric symmetry property of the transformation. To do this, we first calculate the center frequency and then evaluate . If , the stopband edges are ws1 and w2 . If , we must calcula...
	(4.9)


	low-pass « bandpass Transformation (4/4)
	The low-pass « bandpass transformation described by Eqn. 4.5 corresponds to a reactance transformation that can be directly applied to an LC filter. Knowing the center frequency w0 and the bandwidth B of the bandpass filter, one can then replace the...
	Fig 4-8: Application of the low-pass « bandpass transformation.

	types of approximations
	There are several types of approximations, each having their own features. The best-known are:
	1) The Butterworth approximation: offers a very flat attenuation in the passband with a monotonically increasing attenuation in the stopband. The transition from the passband to the stopband is controlled. The phase characteristic is nonlinear, and t...
	2) The Chebyshev approximation: offers a more rapid transition from the passband to the stopband than the Butterworth, but has ripples in the passband. The attenuation increases monotonically in the stopband. The phase characteristic is highly nonlin...
	3) The Bessel approximation: offers a linear phase delay and therefore a constant group delay in the passband. However, the transition from the passband to the stopband is very gradual.
	4) The Cauer or Elliptic approximation: offers a very steep transition from the passband to the stopband, but has ripples in the passband as well as the stopband. The phase characteristic and the group delay are highly nonlinear and rippled.

	Butterworth Approximation (1/3)
	The Butterworth function is certainly the simplest of the analytical approximations. The typical shape of the Butterworth transfer function is shown in Fig. 4-9.
	Fig 4-9: Magnitude of the Butterworth transfer function.
	(4.10)
	(4.11)
	(4.12)

	Butterworth Approximation (2/3)
	The function given by Eqn. 4.10 is plotted for and for different values of N in Fig. 4-10.
	Fig 4-10: Magnitude of the transfer function for .
	(4.13)
	(4.14)

	Butterworth Approximation (3/3)
	It can be shown that the poles of the transfer function H(W) are located on a circle as indicated in Fig. 4-11.
	Fig 4-11: Poles of the Butterworth transfer function in the normalized s plane (7th order).
	(4.15)
	1) Normalize the tolerance plot by dividing the frequency by the filter’s cutoff frequency. This permits Ws to be determined;

	2) Determine the order according to Eqn. 4.14;
	3) Calculate the value of e using Eqn. 4.12.

	Chebyshev Approximation (1/3)
	Fig. 4-12 shows the typical shape of the magnitude of the transfer function of even-order and odd-order Chebyshev filters. In contrast with the Butterworth filter, the Chebyshev filter has ripples in the passband, followed by a monotonic decrease in ...
	Fig 4-12: Typical transfer function shapes for a Chebyshev filter.
	(4.16)
	(4.17)
	(4.18)

	Chebyshev Approximation (2/3)
	These polynomials satisfy the following recursive formula:
	(4.19)
	(4.20)
	Fig 4-13: Chebyshev polynomials.
	(4.21)
	Which gives: (4.22)

	Chebyshev Approximation (3/3)
	Fig 4-14: Chart for choosing the Chebyshev filter order.
	(4.23)

	Comparison of Butterworth and Chebyshev approximations
	Fig 4-15: Comparison of the attenuation of 3rd order Butterworth and Chebyshev filters.

	All-pole low-pass LC FIlter (1/3)
	For both Butterworth and Chebyshev approximations, there are direct relationships between the values of the reactive components and the characteristic parameters e and N for the low- pass prototype filters in Fig. 4-16 and 4-17. In general, we would ...
	Fig 4-16: All-pole low-pass LC filters with minimum inductors.
	Fig 4-17: All-pole low-pass LC filters with minimum capacitors.

	All-pole low-pass LC FIlter (2/3)
	Butterworth
	(4.24)
	Table 4-1: Butterworth prototype filter () and wp = 1 rad/s.



	All-pole low-pass LC FIlter (3/3)
	Chebyshev
	(4.25)
	(4.26)
	(4.27)
	(4.28)


	Example: calculation of a third-order Chebyshev prototype filter
	We would like to find the values of the reactive elements of a 3rd order Chebyshev filter having a ripple in the passband of less than 0.1 dB, a cutoff frequency of 1 rad/s and a source resistance .
	From which:
	From which:
	Fig 4-18: Example of the calculation of a 3rd order Chebyshev prototype filter.

	surface acoustic wave (SAW) filters (1/2)
	Surface Acoustic Waves (SAWs) are a special type of elastic wave that propagates along discontinuities such as the free surface of a solid (or the separation surface between two different elastic media). They were discovered theoretically by Lord Ray...
	Fig 4-19: Propagation of a surface wave.

	surface acoustic wave (SAW) filters (2/2)
	Fig 4-20: Diagram of a SAW filter.

	transfer function of a SAW filter
	For a regular comb, the elastic excitations due to different finger pairs add together to give a synchronous frequency . If the frequency moves away from this value, the interference is no longer completely constructive and the resulting signal dimin...
	(4.29)
	Fig 4-21: Weighting the impulse response.

	transducer equivalent circuit
	Fig 4-22: Transducer equivalent circuit.
	(4.30)
	with: (4.31)

	Reflections and insertion losses
	Fig 4-23: Reduction of intratransducer reflections.

	Limits and applications of SAW filters
	Fig 4-24: Response of a SAW filter for IF TV.

	Other SAW filter structures
	The preceding description of surface wave filters implies an ideal model in which the waves propagate freely, without reflection. In practice, we seek to design devices in which these conditions are roughly satisfied. Nevertheless, there is another a...
	a) arrays of mechanical grooves: Regular grooves can be etched by ions on a crystal surface; an array made of ZnO or silica, or even metal can also be deposited. Thus, each line of discontinuity will be the source of a reflected wavelet. If the refle...
	b) conductor arrays: Reflections from arrays of conductors are more subtle. The incident waves induce a current in the conductors, which then behave as transducers whose excitation is caused by the incident wave. The waves re-emitted in this way by t...

	SAW resonator filters
	By placing two transducers inside a surface wave cavity closed by two reflectors of one of the types decribed above, we obtain a resonator filter.
	Fig 4-25: Example of a SAW resonator filter.
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