CHAPTER 4

HF FILTERS



4-2
TYPES OF HF FILTERS

Among the multiple ways of making filters, only the following are
useable for HF (3 MHz to 30 MHz) and VHF (30 MHz to 300
MHZz):

1) LC filters;

2) Continuous time gy,-C filters;

3) Mechanical filters;

4) Ceramic filters;

5) Quartz filters;

6) Surface Acoustic Wave (SAW) filters.
With the exception of g,,-C filters, all these filters are realized
with discrete components. The g,,-C filters are the only ones
that can be integrated on a chip while maintaining good enough
performance at high frequency (<« 300 MHz).
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4-3
ATTENUATION, PHASE, AND GROUP DELAY

A filter is a linear circuit that discriminates between different
frequencies. The frequencies that are not affected by the filter
make up the passband, while the attenuated frequencies make up
the stopband. Since the filter is linear, the transfer function
can be defined:

M
H (s-2,)

. outputsignal _  , k=1 — k(i . o i0(@)
H(jo) = input signal Ho " HGo)l-e (4.1)

H(S_pk)
k=1

where z; are the fransmission zeros, py are the fransmission
poles and ¢(®) is the phase shift. The input and output signals
are generally voltages, but more rarely currents. It is common in
filter theory to use attenuation, defined by:

A(jw) =-20log(|H(jw)l) (4.2)

which thus corresponds to the log of the inverse of the transfer
function. The values oy for which A(jo,) = 0 are the aftenua-
tion zeros and the frequencies wy for which A(jo,) — oo are the
attenuation poles, which correspond to the transmission zeros
situated on the imaginary axis.

In certain cases, the filter has a phase shift corresponding to a
certain constant delay for the passband frequencies. We then
specify the group delay by:

() 43)

’C((D) = —a-a)—
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CLASSES OF TRANSFER FUNCTIONS

Filters can be classified according to their attenuation charac-
teristics:

1) Low-Pass Filter = LPF;

2) High-Pass Filter = HPF;

3) Band-Pass Filter = BPF;

4) Band-Reject Filter = BRF.
Diagrams of these four types of attenuation characteristics are
presented in Fig. 4-1.
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Fig 4-1:  The principal attenuation characteristics.

Each of these characteristics contains one or several passbands
and stopbands, separated by fransition bands in which the atten-
uation varies. The narrower these transition bands, the more
selective the filter. This requires a high-order transfer function
and implies a complex realization and high cost.

©C.C.ENZ HF filters 22.9.10



FILTER SPECIFICATIONS

Within the set of specifications of a filter, such as the dimen-
sions, the power consumption, the functional temperature range,
etc., the most important is certainly the specification of the
attenuation characteristics or in certain cases the group delay.
This is usually done given the attenuation or group delay toler-
ance limits (cf Fig. 4-2). It is useful to remember that the
attenuation characteristics and the phase shift cannot be speci-
fied independently so that the causality of the filter is assured.

4

a) Attenuation vs. frequency specifications.

Delay tolerance boundary

Group Delay, sec

/Typical delay function

b) Group (phase) delay specifications.
Fig 4-2:  Different specifications of a filter.
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4-6
NORMALIZATION AND LOW-PASS PROTOTYPE

The design of a filter can be broken into two steps: the approxi-
mation step followed by the realization (or implementation). The
approximation step involves the search for a transfer function
that satisfies the imposed specifications, while the realization
step involves the synthesis of a circuit (either active or passive)
having the fransfer function defined during the approximation
step. In the case in which the specification is simple (constant
and equal attenuation in the stopbands), tabulated analytical
approximations can be used. These tables generally correspond
to a low-pass filter with a stopband normalized to 1 rad/s
(cf Fig. 4-3).

Fig 4-3:  Normalized tolerance plot.

These tables can also be applied to high-pass, band-pass, or
band-reject filter design, by using the appropriate frequency or
circuit tfransformations.
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4-7
LOW-PASS < HIGH-PASS TRANSFORMATION

It is easy to transform a low-pass filter to high-pass by the sim-
ple inversion of the frequency axis, which corresponds to the
following frequency transformation:

iQ = wy/(jo) (44

where Q is the normalized frequency corresponding to the low-
pass prototype (LPP) filter and w is the frequency of the high-
pass (HP) filter to be realized, expressed in rad/s. The low-pass
prototype filter is simply obtained by carrying out the transfor-
mations indicated in Fig. 4-4.
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Fig 4-4:  Obtaining the LPP from the HP tolerance plot

Circuit transformations correspond to this frequency transfor-
mation. In particular, for LC filters, the (denormalized) high-
pass filter is obtained by applying the transformation r'ules
shown in Fig. 4-5.

| C = 1/(0yh
o o
C L = 1/(o,0)
—f—o  — o

a) Low-pass prototype filter. b) Denormalized high-pass filter.

Fig 4-5:  Transformation of elements of the LPP filter.
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4-8
LOW-PASS <> BANDPASS TRANSFORMATION (1/4)

In the case in which the tolerance plot of a bandpass filter spec-
ifies a constant and equal attenuation in the stopbands, the
transformation low-pass <> bandpass can be used:

2 2
_ P T

p-B
where s = JQ is the Laplace variable in the domain of the low-
pass prototype filter and p = jo is the Laplace variable in the
domain of the bandpass filter. Eqn. 4.5 transforms the fre-
quency S = 0 to p = tjwy, which is then the center frequency
of the bandpass filter. The frequencies S = £j(2 are trans-
formed to two positive frequencies o, , = ¢%BQ+Jwg+i(BQ)2
such that:

S

(4.5)

00, = (DS (4.6)

This signifies that each frequency of the tolerance plot of the
low-pass prototype filter corresponding to a given attenuation is
transformed to two frequencies having the same attenuation and
located according to geometrical symmetry around the center
frequency. In addition, ‘rhefpassnond edges transform into two

. -1 2 152 .
frequencies o, ,, = 5B+ Jog+3B" and therefore:

~w., =B 4.7)

where B is the filter bandwidth (in rad/s). The frequencies
s = +JQ. map info two positive frequencies mg; and mg, such
that:

W — Mg = BO (4.8)
These properties of the low-pass <> bandpass transformation
are illustrated in an example in Fig. 4-6. The method to obtain

the tolerance plot of the LPP from the bandpass filter specifica-
tions is described on page 4-10.
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4-9

LOW-PASS <> BANDPASS TRANSFORMATION (2/4)

(M)

(BIV

Low-pass <> bandpass transformation.

Fig 4-6:

22.9.10
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4-10
LOW-PASS <> BANDPASS TRANSFORMATION (3/4)

Consider the tfolerance plot of the bandpass filter shown in
Fig. 4-7 a).

A, dB

s | 1 i o
We Wy Wy Wy W, w

a) b)
Fig 4-7:  Modification of the initial tolerance plot of the band-
pass filter for the establishment of the specifications of

the low-pass prototype filter.
In order to be able to apply the low-pass <> bandpass transfor-
mation, the tolerance plot must be modified as follows:

1) The attenuation in the stopbands must be leveled to the
maximum attenuation (cf Fig. 4-7 b));

2) The stopband edges must be modified such that they sat-
isfy the geometric symmetry property of the fransfor-
mation. To do this, we first calculate the center
frequency o, = [©h1Dp) and then evaluate
0y = 0y/®,. If o > wq, the stopband edges are wg;
and o . If oy <, we must calculate o, = cog/col
and define the stopband edges as w1 and w; .

We can now derive the folerance plot of the low-pass prototype
(LPP) filter by remarking that the attenuations Ay and Ag remain
unchanged, while the frequency () is given by:

Wgp — Ogg Wgp — Ogg

Q. = - T (49)
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4-11
LOW-PASS <> BANDPASS TRANSFORMATION (4/4)

The low-pass <> bandpass transformation described by Eqn. 4.5
corresponds to a reactance transformation that can be directly
applied o an LC filter. Knowing the center frequency wgp and the
bandwidth B of the bandpass filter, one can then replace the
inductors by series resonant circuits and the capacitors by par-
allel resonant circuits, all tuned to the same resonant frequency
g expressed in rad/s.

I L=1/B
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b) Transformation of a capacitor (normalized).

—1 T

O + T 0

MR N

c¢) Transformation of a third-order all-pole filter.
Fig 4-8:  Application of the low-pass <> bandpass transforma-
tion.
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4-12
TYPES OF APPROXIMATIONS

There are several types of approximations, each having their
own features. The best-known are:

1) The Butterworth approximation: offers a very flat atten-
uation in the passband with a monotonically increasing
attenuation in the stopband. The transition from the
passband to the stopband is controlled. The phase char-
acteristic is nonlinear, and the group delay has a bump at
the passband edge.

2) The Chebyshev approximation: offers a more rapid transi-
tion from the passband to the stopband than the Butter-
worth, but has ripples in the passband. The attenuation
increases monotonically in the stopband. The phase char-
acteristic is highly nonlinear and the group delay has
peaks at the passband edge.

3) _The Bessel approximation: offers a linear phase delay and
therefore a constant group delay in the passband. How-
ever, the transition from the passband to the stopband is
very gradual.

4) The Cauer or Elliptic approximation: offers a very steep
transition from the passband to the stopband, but has
ripples in the passband as well as the stopband. The phase
characteristic and the group delay are highly nonlinear
and rippled.
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4-13
BUTTERWORTH APPROXIMATION (1/3)

The Butterworth function is certainly the simplest of the ana-
lytical approximations. The typical shape of the Butterworth
transfer function is shown in Fig. 4-9.

H(w)| 4

0 e

(1),,

Fig 4-9:  Magnitude of the Butterworth transfer function.
The magnitude of the Butterworth transfer function of order N
and the corresponding attenuation are given respectively by:

H@) = —— = ——— (410
Jlﬂ;%%} «/1+SQ
p
AdB_ZOIog(H(lg)) = 10log(1 + £°Q°") (4.11)

where Q= ®/ o, is the frequency normalized to the cutoff fre-
quency mp which'is the frequency which corresponds to an atten-
uation Ay . In the particular case where ¢ = 1, o, corresponds
to the frequency at -3dB (A, = = 3dB). The parameter ¢ is thus
determined by the maximum Variation of the attenuation toler-
ated in the passband, given Ay:

A /10
e = J10™ (4.12)
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4-14
BUTTERWORTH APPROXIMATION (2/3)

The function given by Eqgn. 4.10 is plotted for € = 1 and for dif-
ferent values of N in Fig. 4-10.
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Fig 4-10: Magnitude of the transfer function for ¢ = 1.

It can be shown that the 2N-1 derivatives of Egn. 4.10 with ®
cancel out at the origin, which explains the increasingly flat
appearance of the characteristics near the origin when the fil-
ter's order increases. The order of the filter that satisfies a
certain tolerance plot can be deftermined by noting that the
attenuations at the passband and stopband edges are given by:

A, = 10log(1+&”) A = 10log(1+e°Q")  (4.13)

from which one gets the minimum value of the order N that sat-
isfies the tolerance plot:

A,/10

Iog[lo - 1j

10Ap/10 B
2 -log(Q,)

(4.14)

If the expression on the right side of Eqn. 4.14 is not a whole
number, we must choose the next highest whole number.
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4-15
BUTTERWORTH APPROXIMATION (3/3)

It can be shown that the poles of the transfer function H(Q)
are located on a circle as indicated in Fig. 4-11.

rJQ

normalized S plane

O\ \T (DI/N
/ > G

Fig 4-11: Poles of the Butterworth transfer function in the nor-

malized s plane (7th order).
The complex conjugate poles can be grouped by pairs, and the
transfer function can be factored into a product of a possible
1st degree function and 2nd order functions each having the
same normalized resonant frequency €2y and quality factors Qy
given by:

Q, 20 _ @UN Qy = L k=12..N (4.15)

23in(2;&1n)

©

The procedure for synthesizing a Butterworth filter is summa-
rized below:

1) Normalize the tolerance plot by dividing the frequency by
the filter's cutoff frequency. This permits () to be
determined;

2) Determine the order according to Eqn. 4.14;

3) Calculate the value of € using Eqn. 4.12,
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4-16
CHEBYSHEV APPROXIMATION (1/3)

Fig. 4-12 shows the typical shape of the magnitude of the trans-
fer function of even-order and odd-order Chebyshev filters. In
contrast with the Butterworth filter, the Chebyshev filter has
ripples in the passband, followed by a monotonic decrease in the
stopband. Notice that the number of maxima and minima in the
positive passband corresponds to (N+1) where N is the order of
the filter.
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Fig 4-12: Typical transfer function shapes for a Chebyshev filter.
The transfer function is given by:

H(w)| = . (4.16)
Jr+s? D Jl+8 c©)
Agg = 20|og(|H (1Q)|) = 10log(1 + £°C(Q)) (4.17)

where CN(Q) is the Chebyshev polynomial of order N defined
by:
cos(N - acos(€2)) Q<1

Cn(€Y) = (4.18)
cosh(N - acosh(Q)) Q>1
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4-17
CHEBYSHEV APPROXIMATION (2/3)

These polynomials satisfy the following recursive formula:

C, 4 1(Q) = 2QC\(Q) -Cy_ (D) (4.19)

The first polynomials given below are shown in Fig. 4-13.

Col@) =1 C,(@Q) = Q
CZ(Q) = 292—1 CS(Q) - 4Q3—3Q (420)

4 2
C,(Q) = 8Q"-8Q°+1

Fig 4-13: Chebyshev polynomials.

The attenuation of a Chebyshev filter of order N at the stop-
band edge is given by:

A =A@ = Q) = 10log(1 +&°CF(Qy)) = 20log(C(Qy)) (4.21)

Which gives: A+ 20|og@ = 2010g(Cy(Qy)) (4.22)
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4-18
CHEBYSHEV APPROXIMATION (3/3)

The right side of Eqn. 4.22 is constant for a given order N and
value Q.. Once the order has been chosen, the attenuation can
be split up between the two left-hand terms of Eqn. 4.22
according to the specifications. An increase of the attenuation in
the stopband implies an increase of € and therefore of the ripple
in the passband. Egn. 4.22 is represented in Fig. 4-14. Knowing
Ap . As and Qg , the chart in Fig. 4-14 can be used fo determine
the order necessary to satisfy the tolerance plot.

110

100 |-

N

80

70

60

50

A(Q,) + 20 iog (1/e), dB

aof

30

20,

10

I i 1 1 Il 1 1 X
11 12 13 14 15 16 1.7 18 19 2
Q

Fig 4-14: Chart for choosing the Chebyshev filter order.
The order necessary to satisfy the tolerance plot can also be
determined by using the following formula:

A+ 20Iog(%) +6

>
N= 8.68acosh(Q,) (4.23)

©C.C.ENZ HF filters 22.9.10



Attenuation (dB)

10

20

30

40

Fig 4-15:

©C.C.ENZ

Butterworth
Response

3dB
Chebyshev

Response

|

[
1 2 3 4
Frequency (f/f,)

Comparison of the attenuation of 3rd order Butter-
worth and Chebyshev filters.

HF filters

4-19

COMPARISON OF BUTTERWORTH AND CHEBYSHEV
APPROXIMATIONS
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4-20
ALL-POLE LOW-PASS LC FILTER (1/3)

For both Butterworth and Chebyshev approximations, there are
direct relationships between the values of the reactive compo-
nents and the characteristic parameters € and N for the low-
pass prototype filters in Fig. 4-16 and 4-17. In general, we would
choose one of the filters with the minimum number of inductors
in Fig. 4-16.
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—1 A Y ... M
L_—=o

0
—
0
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VS l() — Cl p— C3 = CN—l

Q

Q

a) Even-order (N even).

Rs Lo Ln-a
M .. M

s lCD T G TG T vz T E‘:I "

b) Odd-order (N odd).
Fig 4-16: All-pole low-pass LC filters with minimum inductors.
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b) Odd-order (N odd).
Fig 4-17: All-pole low-pass LC filters with minimum capacitors.
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ALL-POLE LOW-PASS LC FILTER (2/3)

Butterworth

4-21

For the Butterworth approximation, the values of the reactive
elements (capacitors et inductors) of the filters in Fig. 4-16 hav-
ing equal resistive terminations equal to 1 Q and a cutoff fre-

quency o, equal to 1 rad/s, are simply given by:

2N

2k—1n>

k =1,2,..

.» N

(4.24)

Note that Eqn. 4.24 is only valid for filters with identical termi-

nations RS = RL

= 10. The values calculated from Eqn. 4.24

are tabulated in Table 4-1 for ¢ = 1. For the case in which
Rg#R| , it is necessary to use Table 4-2.

Table 4-1: Butterworth prototype filter (R = R, = 1) and o,

=1 rad/s.

n C L, Cq L, Cs L, C,

9 1414 1.414

3 1.000 2.000 1.000

4 0765 1.848 1.848 0.765

5 0618 1618 2000 1.618 0.618

6 0518 1414 1932 1932 1.414 0.518

7 0445 1247 1,802 2000 1802 1.247 0.445

n L, C, Lg C, Ly Ce L,
1 Ll L3
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4-22
ALL-POLE LOW-PASS LC FILTER (3/3)
Chebyshev

The relationships for a Chebyshev approximation are a little
more complicated. First we must determine the constants h and
& using the value of &:

1/N
hz£%+ /1+8—12) and: &Eh—% (4.25)

The cutoff frequency @, is equal to 1 rad/s. The values of the
reactive elements are then given by:

4sin =
c, = gézN) (4.26)
165|n(4|;N3 )sm(d'l;Nln)
Cok—1-Lok =
2
( 3 D (4.27)
. N _16sm ) n(kz n)
2k+1 =2k 2 (Zsm( D
4sin(%
N odd: Cy = ER, (4 28)
4R Sm(ZN)
N even: Ly =

§

The calculation must begin with Egn. 4.26 if we have the value of
Rg or in the reverse order, that is to say with Eqn. 4.28 if we
have the value of R| . Note that contrary to Butterworth filters,
where the terminations can be identical, in the case of even-
order Chebyshev filters, they must be different. The element
values are tabulated in Tables 4-3 to 4-6 for different ripple
values in the passband.
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4-23

EXAMPLE: CALCULATION OF A THIRD-ORDER
CHEBYSHEV PROTOTYPE FILTER

We would like to find the values of the reactive elements of a
3rd order Chebyshev filter having a ripple in the passband of
less than 0.1 dB, a cutoff frequency of 1 rad/s and a source
resistance Rg = 1Q).

From Eqn. 4.12 we get ¢ = 0.1526204. From Egn. 4.25 we have
h = 2.36215 and £ = 1.938812. Knowing that Rg = 1€, we can
calculate Cq from Egn. 4.26:

c, = 48IN(70) _ 4 53156F

S

c,L, = 16sin(m/6)sIn((37)/6) _ 1183609

%+ (2sin(n/3))°

From which: L, = 1.1473966H
C,L, = 165|2((37c)/6)sm((5n)2/6) — 1183609

E™+(2sin((2w)/3))

From which: C, = 1.03156F

Note that according to Eqn. 4.28, R, is equal to Rg.

10 1.1473966 H
1 Y

L1
Vsl() —L 103156 F —— 1.03156 F E‘] 10

Fig 4-18: Example of the calculation of a 3rd order Chebyshev
prototype filter.
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4-24
SURFACE ACOUSTIC WAVE (SAW) FILTERS (1/2)

Surface Acoustic Waves (SAWSs) are a special type of elastic
wave that propagates along discontinuities such as the free sur-
face of a solid (or the separation surface between two different
elastic media). They were discovered theoretically by Lord
Rayleigh, in 1885, during his studies of earthquakes. The ampli-
tude of the mechanical deformations decreases exponentially
inside the solid when getting farther from the surface such that
the mechanical energy carried by the wave is confined, in a
region about the thickness of the wavelength A, under the sur-
face (cf Fig. 4-19).

Surface

1 | ﬂ’\': ’
[+ ]

Fig 4-19: Propagation of a surface wave.

These waves, nondispersive, are characterized by slow propaga-
tion (aver'age speed v = 3 Km/s) and a generally weak attenuation
(on the order of 1074 dB/A, i.e. 0,01 dB/us for lithium niobate YZ
at 100 MHz).

Since the signals to be filtered are usually electrical, the use of
elastic phenomena requires transformations from mechanical
energy to electrical energy and vice versa. Piezoelectric crystals
in which there is a natural coupling between elastic and electrical
phenomena are thus the material used. Indeed, if the substrate
is piezoelectric, the deformations produced by the elastic wave
induce local electric fields, which accompany the mechanical
wave during its propagation. The electric field interacts with all
the metal electrodes placed on the surface, which can also be
connected to exterior circuits.
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4-25
SURFACE ACOUSTIC WAVE (SAW) FILTERS (2/2)

The surface waves are generated and detected with transducers
made of interdigitated metallic combs deposited on the sub-
strate (cf Fig. 4-20 a)). The classic technology uses photolithog-
raphy of a thin metallic layer, usually aluminum about 2000 A
thick, deposited on a polished monocrystal: one single mask level
is usually enough and the fabrication yield is excellent.

Finger
) 9

w
A / overlap

_LGLW— Output
— R,
/4
Ab
sorber Piezoelectric Absorber
substrate
a) Setup of a SAW filter.
D, D, D, © et Dy,
! e GO GO GG

z
’ Output signal

(V,)
b) Corresponding transversal filter.

Fig 4-20: Diagram of a SAW filter.

The surface acoustic wave filter corresponds to the transversal
filter (FIR filter) whose diagram is shown in Fig. 4-20 b). The
delay At is due to the spacing between each finger of the trans-
ducers, and the weighting factor A of the delayed signal is
determined by the length W of each finger.

©C.C.ENZ HF filters 22.9.10



4-26
TRANSFER FUNCTION OF A SAW FILTER

For a regular comb, the elastic excitations due to different fin-
ger pairs add together to give a synchronous frequency
fo = v/A. If the frequency moves away from this value, the
interference is no longer completely constructive and the result-
ing signal diminishes: the passband of a regular ftransducer is
narrower when it has more fingers. If N is the total number of
fingers, the frequency response is given by:
f=1
SINY with x=(N- 1)——— (4.29)
X 2 1,
Other responses can be obtained either by changing the ampli-
tude by appropriately weighting finger length (apodization)
(cf Fig. 4-21 a)), or by changing the phase by weighting finger
spacing (cf Fig. 4-21 b).

H(X) =

Apodization Finger withdrawal

(a) (b)

Fig 4-21: Weighting the impulse response.

The global transfer function is equal to the product of the rela-
tive functions of the emitter and receiver transducers. If one of
the transducers has few fingers (meaning a wide passband), the
transfer function is determined uniquely by the design of the
other. In addition, if the second transducer with uniform aper-
ture has few fingers, it will have high insertion loss. If the
number of fingers increases, its frequency response, in sin x/x,
will “round out” the global response of the filter. The use of two
apodized transducers complicates the problem of synthesis.
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4-27
TRANSDUCER EQUIVALENT CIRCUIT

transducer
r r—— - - —- —-— - — T
o, 1 i 1 | [
I |
S TG #JGt B
o | L | [
|G() B«
A A

fo fo
Fig 4-22: Transducer equivalent circuit.

The equivalent circuit of a tfransducer is shown in Fig. 4-22. The
input admittance of the transducer (within the dotted lines of
Fig. 4-22) is composed of three parallel elements given by:

N-1

Ci= > eW
sin(x)72
G(f) = Gmax[—x(—)] (4.30)
B sin(2x) — 2x
Bt(f) - Gmax 2%2
with: Ginax = Gilf) = BK2F(CIo (4.31)

where k? is the electromechanical coupling coefficient of the
piezoelectric material, € its permittivity and W the length of the
transducer fingers. Two parasitic elements have been added: the
resistance r of the electrodes and the capacitance C, associated
with the setup.
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4-28
REFLECTIONS AND INSERTION LOSSES

Secondary effects change the ideal response of interdigitated
transducers. The most important are related either to diffrac-
tion, the waveform spreading out if its opening is too small, or to
reflections from the crystal edges and particularly from the
other electrodes. Intratransducer reflections can be minimized
by using double-finger electrodes, in which each finger is
replaced by a pair of fingers of thickness A/8 instead of A/4

(cf Fig. 4-23).

Fig 4-23: Reduction of intratransducer reflections.

The reflections from the two ports, due to the regeneration of
elastic waves by the voltage created on the transducer elec-
trodes, cause “triple transit” echoes that are as strong as the
losses are weak. This effect can be reduced by slightly changing
the device so that the insertion losses are equal or greater than
20 dB or by using double or unidirectional multiphased transduc-
ers at the price of a reduced bandwidth.

The insertion losses of surface acoustic wave filters stem mainly
from the bidirectionality of the transducers and from the elec-
trical mismatching, but also, especially at high frequency, from
the parasitic resistance of the fingers and from the propagation
losses in the substrate. In addition, by tolerating reasonable
losses, one can only obtain, from a given material, a limited rela-
tive passband Af/fy, on the order of K, the square root of the
electromechanical coupling coefficient.
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LIMITS AND APPLICATIONS OF SAW FILTERS

Under 10 MHz, crystal dimensions lead to filters with modest
performance. Above 1 GHz, major technological problems arise.
But it is in the VHF and UHF ranges that SAW filters are the
most advantageous. Limited by the dimensions of the crystals
(several cm), the transition band of transversal filters remains
higher than 100 kHz. It can be reduced by the use of resona-
tors. It is difficult fo give characteristic numbers, for insertion
losses or for ripples in the band, because performance varies
enormously both with the quality of the design and realization
and also as a function of the filter design specifications. Thus a
narrow-band filter can have just 2 or 3 dB of losses if the unidi-
rectional structure is realized well, while a wide-band filter with
small ripples in the band will have insertion losses of about 20
dB. A major advantage of SAW filters is that they don't require
any frequency adjustment.

They are commonly used to realize the IF filters in TV receivers
(cf Fig. 4-24).

0
10 — -6 dB
o Solid curve SWIF I.F.
; —20|— \ dotted curve standard I.F.
@ \
o
a —-30+ —
g -40— | 7/ i ~
§ -50 F
— 60 |
70 || L | fMHy
39.75 42.17 45.75
Adj. pict. Chroma Picture
41.25 47.25
Sound Adj. sound

Fig 4-24: Response of a SAW filter for IF TV.
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OTHER SAW FILTER STRUCTURES

The preceding description of surface wave filters implies an
ideal model in which the waves propagate freely, without reflec-
tion. In practice, we seek to design devices in which these condi-
tions are roughly satisfied. Nevertheless, there is another
approach in which the deviation from the model of free waves is
deliberately emphasized in order to take advantage of these
effects.
The surface motion reflects from mechanical and electrical dis-
continuities. If we exclude the reflections from the crystal
boundaries, difficult to control and usually avoided by using an
absorber (cf Fig. 4-20), we mostly use reflections from arrays:
a)arrays of mechanical grooves: Regular grooves can be
etched by ions on a crystal surface; an array made of ZnO
or silica, or even metal can also be deposited. Thus, each
line of discontinuity will be the source of a reflected wave-
let. If the reflected wavelets from the different lines are
in phase, the effect will be cumulative.

b)conductor arrays: Reflections from arrays of conductors
are more subtle. The incident waves induce a current in the
conductors, which then behave as transducers whose exci-
tation is caused by the incident wave. The waves re-emit-
ted in this way by the transducer are interpreted as
“electrically” reflected (or diffused) waves. The amplitude
of this diffusion depends strongly on the load: open circuit,
short circuit, matched circuit, etc. One can even obtain a
re-emission that is geometrically separated from the inci-
dent wave, which leads to multiple band couplers.
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SAW RESONATOR FILTERS

By placing two ftransducers inside a surface wave cavity closed
by two reflectors of one of the types decribed above, we obtain
a resonator filter.

LRI

\ /

~
Reflective

JU00I00R--- 01
array
Fig 4-25. Example of a SAW resonator filter.
We can thus achieve quality factors on the order of 10'000. It is
also possible to place the transducers outside the cavity, which
makes their position less critical but increases insertion losses.
We can also couple multiple cavities, for example by using multi-
ple-band couplers, but this process is rarely used for more than
two cavities.

in Out

MULTISTRIP ARRAY FILTERS

A multiple band coupler placed astride over an input track and an
output track has the simple effect of shifting the phase of the
piezoelectric waves. On the other hand, if the pitch of the array
is modulated on both tracks, we get a selective reflection at cer-
tain frequencies, which allows the realization of electric diffu-
sion filters. We can also use this procedure by reversing the
propagation direction with reflection (MRA or multistrip reflec-
tive array) or on the contrary, by preserving the propagation
direction with transmission (MTA or multistrip fransmissive
array).
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REFLECTIVE ARRAY COMPRESSOR SAW FILTERS

Fig. 4-26 represents a double-reflection filter on two etched
arrays, turned approximately 45° from the axis of propagation
of the input and output waves. This process is very convenient
for realizing dispersive filters (used in modern radar) in which
the bandwidth x transmission time product reaches 10%. A simi-
lar process which uses points instead of grooves has also been
proposed.

Metal Film
of Variable Width

Etched
Grating

Input
Transducer

Output
Transducer

Fig 4-26: Reflective array dispersive filter.

ACTIVE SAW FILTERS

Finally, we would like to point out the possibility of looping back a
line of surface waves on itself through an amplifier which almost
completely compensates the losses. We thus obtain extremely
narrow-band filters (overvoltage = several 10%) that can be made
tunable by inserting an electronic phase-shifter in the loop.
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Wm —IN —..h
G Cy Ry R
~ 1 T 1
—
1 n  Ryg/Ry C, L, Cs L, n Rg/Ry C, L, Cs L, Cs Lg C,
2 1.111 1.035 1.835 5 0.900 0.442 1.027 1.910 1.756 1.389
w 1.250 0.849 2.121 0.800 0.470 0.866 2.061 1.544 1.738
- 1.429 0.697 2.439 0.700 0.517 0.731 2.285 1.333 2.108
- 1.667 0.566 2.828 0.600 0.586 0.609 2.600 1.126 2.552
n'e 2.000 0.448 3.346 0.500 0.686 0.496 3.051 0.924 3.133
2.500 0.342 4.095 0.400 0.838 0.388 3.736 0.727 3.965
H 3.333 0.245 5.313 0.300 1.094 0.285 4.884 0.537 5.307
(7p)] 5.000 0.156 7.707 0.200 1.608 0.186 7.185 0.352 7.935
o 10.000 0.074 14.814 0.100 3.512 0.091 14.095 0.173 15.710
— 0 1.414 0.707 ) 1.545 1.694 1.382 0.894 0.309
| - 3 0.900 0.808 1.633 1.599 6 1.111 0.289 1.040 1.322 2.054 1.744 1.335
m 0.800 0.844 1.384 1.926 1.250 0.245 1.116 1.126 2.239 1.550 1.688
— 0.700 0.915 1.165 2.277 1.429 0.207 1.236 0.957 2.499 1.346 2.062
“— 0.800 1.023 0.965 2.702 1.667 0.173 1.407 0.801 2.858 1.143 2.509
JeB) 0.500 1.181 0.779 3.261 2.000 0.141 1.653 0.654 3.369 0.942 3.094
o 0.400 1.425 0.604 4.064 2.500 0.111 2.028 0514 4.141 0.745 3.931
= 0.300 1.838 0.440 5.363 3.333 0.082 2.656 0.379 5.433 0.552 5.280
+— 0.200 2.669 0.284 7.910 5.000 0.054 3.917 0.248 8.020 0.363 7.922
m 0.100 5.167 0.138 15.455 10.000 0.026 7.705 0.122 15.786 0.179 15.738
o 0 1.500 1.333 0.500 ) 1.553 1.759 1.553 1.202 0.758 0.259
= 4 1111 0466 1592 1744 1469 7 0.900 0.299 0.711 1.404 1.489 2,125 1.727 1.296
o 1250 0388 1695 1511 1811 0.800 0.322 0.606 1517 1.278 2.334 1.546 1.652
c 1.429 0.325 1.862 1.291 2.175 0.700 0.357 0.515 1.688 1.091 2.618 1.350 2.028
..n 1.667 0.269 2.103 1.082 2613 0.600 0.408 0.432 1.928 0917 3.005 1.150 2477
o 2.000 0.218 2.452 0.883 3.187 0.500 0.480 0.354 2.273 0.751 3.553 0.951 3.064
2.500 0.169 2.986 0.691 4.009 0.400 0.590 0.278 2.795 0.592 4.380 0.754 3.904
W 3.333 0.124 3.883 0.507 5.338 0.300 0.775 0.206 3.671 0.437 5.761 0.560 5.258
M.Iu 5.000 0.080 5.684 0.331 7.940 0.200 1.145 0.135 5.427 0.287 8.526 0.369 7.908
— 10.000 0.039 11.094 0.162 15.642 0.100 2.257 0.067 10.700 0.142 16.822 0.182 15.748
..w. 0 1.531 1.577 1.082 0.383 ) 1.558 1.799 1.659 1.397 1.055 0.656 0.223
m n R;/Ry L, C, L, C, n R /R4 L, C, Lg Cq Ly Ce L,
Rg 1 Ls
1) G, Ry

Table 4-2
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Rq L, L,
C H G, H Ry Ry
n  Rgy/R, C, L, Cs L, n Rg/R,, o L, Cs L, Cs L Cq
2 1.101 1.347 1.483 5 1.000 0.977 1.685 2.037 1.685 0.977
Py 1.111 1.247 1.595 0.900 0.880 1.456 2.174 1.641 1.274
[an] 1.250 0.943 1.997 0.800 0.877 1.235 2.379 1.499 1.607
o 1.429 0.759 2.344 0.700 0.926 1.040 2.658 1.323 1.977
1.667 0.609 2.750 0.600 1.019 0.863 3.041 1.135 2.424
— 2.000 0.479 3.277 0.500 1.166 0.699 3.584 0.942 3.009
o 2.500 0.363 4,033 0.400 1.398 0.544 4.403 0.749 3.845
O. 3.333 0.259 5.255 0.300 1.797 0.398 5.772 0.557 5.193
5.000 0.164 7.650 0.200 2.604 0.259 8.514 0.368 7.826
Vi 10.000  0.078 14.749 0.100 5.041 0.127 16.741 0.182 15.613
o © 1412 0.742 © 1.547 1.795 1.645 1.237 0.488
Mﬂ\ 3 1.000 1.181 1.821 1.181 6 1.101 0.851 1.796 1.841 2.027 1.631 0.937
0.900 1.092 1.660 1.480 1.111 0.760 1.782 1.775 2.094 1.638 1.053
e 0.800 1.097 1.443 1.806 1.250 0.545 1.864 1.489 2.403 1.507 1.504
..n_l.b 0.700 1.160 1.228 2.165 1.429 0.436 2.038 1.266 2.735 1.332 1.899
—_— 0.600 1.274 1.024 2.598 1.667 0.351 2.298 1.061 3.167 1.145 2.357
Y 0.500 1.452 0.829 3.164 2.000 0.279 2.678 0.867 3.768 0.954 2.948
D 0.400 1.734 0.645 3.974 2.500 0.214 3.261 0.682 4.667 0.761 3.790
o 0.300 2.216 0.470 5.280 3.333 0.155 4.245 0.503 6.163 0.568 5.143
> 0.200 3.193 0.305 7.834 5.000 0.100 6.223 0.330 9.151 0.376 7.785
- 0.100 6.141 0.148 15.390 10.000 0.048 12.171 0.162 18.105 0.187 15.595
m 0 1.501 1.433 0.591 0 1.551 1.847 1.790 1.598 1.190 0.469
m 4 1.100 0.950 1.938 1.761 1.046 7 . 1.000 0.913 1.595 2.002 1.870 2.002 1.595 0.913
o 1.111 0.854 1.946 1.744 1.165 0.900 0.816 1.362 2.089 1.722 2.202 1.581 1.206
1.250 0.618 2.075 1.542 1.617 0.800 0.811 1.150 2.262 1.525 2.465 1.464 1.538
> 1.429 0.495 2.279 1.334 2.008 0.700 0.857 0.967 2.516 1.323 2.802 1.307 1.910
(B} 1.667 0.398 2.571 1.128 2.461 0.600 0.943 0.803 2.872 1.124 3.250 1.131 2.359
< 2.000 0.316 2.994 0.926 3.045 0.500 1.080 0.650 3.382 0.928 3.875 0.947 2.948
W 2.500 0.242 3.641 0.729 3.875 0.400 1.297 0.507 4.156 0.735 4812 0.758 3.790
e 3.333 0.174 4727 0.538 5.209 0.300 1.669 0.372 5.454 0.546 6.370 0.568 5.148
D 5.000 0.112 6.910 0.352 7.813 0.200 2.242 0.242 8.057 0.360 9.484 0.378 7.802
c 10.000 0.054 13.469 0.173 15.510 0.100 4.701 0.119 15.872 0.178 18.818 0.188 15.652
C ) 1.529 1.694 1.312 0.523 ) 1.559 1.867 1.866 1.765 1.563 1.161 0.456
.. n  Rp/Rg L, C, L, C, n R./Rg L, C. Ly Cq Ly Cs L,
L L,

Table 4-3
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_Nm FN ﬁ»
C H Cy H Ry
n  Ry/Ry, C, L, C, L,
. 2 1.355  1.209 1.638
m'm/ 1429 0977 1.982
1.667  0.733 2.489
© 2.000  0.560 3.054
— 2.500  0.417 3.827
S 3333  0.293 5.050
5000  0.184 7.426
\Y 10.000  0.087  14.433
o © 1.391 0.819
<C 3 1000  1.433 1.594 1.433
~— 0.900  1.426 1.494 1.622
— 0.800 1451 1.356 1.871
m 0.700 1.521 1.193 2.190
—_ 0.600  1.648 1.017 2.603
— 0500  1.853 0.838 3.159
T 0400  2.188 0.660 3.968
oS 0.300  2.763 0.486 5.279
= 0200  3.942 0.317 7.850
= 0.100 7512 0.155  15.466
.m o 1.513 1.510 0.716
(@) 4 1.355 0.992 2.148 1.585 1.341
b 1429  0.779 2.348 1.429 1.700
o 1.667 0576 2.730 1.185 2.243
> 2.000  0.440 3.227 0.967 2.856
(B} 2,500  0.329 3.961 0.760 3.698
e 3.333 0233 5.178 0.560 5.030
Wu.. 5.000 0.148 7.607 0.367 7.614
a 10.000  0.070  14.887 0.180  15.230
o5 o 1.511 1.768 1.455 0.673
= n Nh\mw H\H QN H\m 0»
@)
- Rg L L
G

Table 4-4

R L Ly Ly
m T
G H_” G H Cs + G |_Hr Ry
n wm\mh QH H\w Ouw N}w Om h@ Q.N
5 1.000 1.301 1.556 2.241 1.556 1.301
0.900 1.285 1.433 2.380 1.488 1.488
0.800 1.300 1.282 2.582 1.382 1.738
0.700 1.358 1.117 2.868 1.244 2.062
0.600 1.470 0.947 3.269 1.085 2.484
0.500 1.654 0.778 3.845 0.913 3.055
0.400 1.954 0.612 4.720 0.733 3.886
0.300 2.477 0.451 6.196 0.550 5.237
0.200 3.546 0.295 9.127 0.366 7.889
0.100 6.787 0.115 17.957 0.182 15.745
0 1.561 1.807 1.766 1.417 0.651
6 1.355 0.942 2.080 1.659 2.247 1.534 1.277
1.429 0.735 2.249 1.454 2.544 1.405 1.629
1.667 0.542 2.600 1.183 3.064 1.185 2.174
2.000 0.414 3.068 0.958 3.712 0.979 2.794
2.500 0.310 3.765 0.749 4.651 0.778 3.645
3.333 0.220 4.927 0.551 6.195 0.580 4.996
5.000 0.139 7.250 0.361 9.261 0.384 7.618
10.000 0.067 14.220 0.178 18.427 0.190 15.350
0 1.534 1.884 1.831 1.749 1.394 0.638
7 1.000 1.262 1.520 2.239 1.680 2.239 1.520 1.262
0.900 1.242 1.395 2.361 1.578 2.397 1.459 1.447
0.800 1.255 1.245 2.548 1.443 2.624 1.362 1.697
0.700 1.310 1.083 2.819 1.283 2.942 1.233 2.021
0.600 1.417 0.917 3.205 1.209 3.384 1.081 2.444
0.500 1.595 0.753 3.764 0.928 4,015 0.914 3.018
0.400 1.885 0.593 4.618 0.742 4.970 0.738 3.855
0.300 2.392 0.437 6.054 0.556 6.569 0.557 5.217
0.200 3.428 0.286 8.937 0.369 9.770 0.372 7.890
0.100 6.570 0.141 17.603 0.184 19.376 0.186 15.813
oo 1.575 1.858 1.921 1.827 1.734 1.379 0.631
n NWB\NNQ hu QN N\w O» bm Q@ N\q
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lter (A, < 0.5 dB).

Chebyshev prototype fi

Table 4-5

Rg L
OH Ou H HN_..
Rg/Ry ¢y Ly Cs L,
1.984 0.983 1.950
2.000 0.909 2.103
2.500 0.564 3.165
3.333 0.375 4411
5.000 0.228 6.700
10.000 0.105 13.322
© 1.307 0.975
1.000 1.864 1.280 1.834
0.900 1.918 1.209 2.026
0.800 1.997 1.120 2.237
0.700 2,114 1.015 2.517
0.500 2.557 0.759 3.436
0.400 2.985 0.615 4.242
0.300 3.729 0.463 5.576
0.200 5.254 0.309 8.225
0.100 9.890 0.153 16.118
0 1.572 1.518 0.932
1.984 0.920 2.586 1.304 1.826
2.000 0.845 2.720 1.238 1.985
2.500 0.516 3.766 0.869 3.121
3.333 0.344 5.120 0.621 4.480
5.000 0.210 7.708 0.400 6.987
10.000 0.098 15.352 0.194 14.262
0 1.436 1.889 1.521 0.913
Ry/Ry L, C, Ly C,
Rg 11 Ly
G, R,

n mw\mh QH st Qw H\A Qm N;G Oﬂ
5 1.000 1.807 1.303 2.691 1.303 1.807
0.900 1.854 1.222 2.849 1.238 1.970
0.800 1.926 1.126 3.060 1.157 2.185
0.700 2.035 1.015 3.353 1.058 2.470
0.600 2.200 0.890 3.765 0.942 2.861
0.500 2.457 0.754 4.367 0.810 3.414
0.400 2.870 0.609 5.296 0.664 4.245
0.300 3.588 0.459 6.871 0.508 5.625
0.200 5.064 0.306 10.054 0.343 8.367
0.100 9.556 0.153 19.647 0.173 16.574
o 1.630 1.740 1.922 1.514 0.903
6 1.984 0.905 2.577 1.368 2.713 1.299 1.796
2.000 0.830 2.704 1.291 2.872 1.237 1.956
2.500 0.506 3.722 0.890 4.109 0.881 3.103
3.333 0.337 5.055 0.632 5.699 0.635 4.481
5.000 0.206 7.615 0.406 8.732 0.412 7.031
10.000 0.096 15.186 0.197 17.681 0.202 14.433
7 1.000 1.790 1.296 2.718 1.385 2.718 1.296 1.790
0.900 1.835 1215 2.869 1.308 2.883 1.234 1.953
0.800 1.905 1.118 3.076 1.215 3.107 1.155 2.168
0.700 2.011 1.007 3.364 1.105 3.416 1.058 2.455
0.600 2.174 0.882 3.772 0.979 3.852 0.944 2.848
0.500 2.428 0.747 4.370 0.838 2.289 0.814 3.405
0.400 2.835 0.604 5.295 0.685 5.470 0.669 4.243
0.300 3.546 0.455 6.867 0.522 7.134 0.513 5.635
0.200 5.007 0.303 10.049 0.352 10.496 0.348 8.404
0.100 9.456 0.151 19.649 0.178 20.631 0.176 16.665
© 1.646 1.777 2.031 1.789 1.924 1.503 0.895
n mh\mm N\H ON H\w O» NLm Oa qu
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Chebyshev prototype filter (A, < 1 dB).

Table 4-6

Rg L Ly Lo
R Ly Ly LT
G Ouu_l Oml_l @.H Ry

of o = T °T °T 1

n mm\wb Q~ N\w Ow N\» Qu NLm Qq
G L, Cs L, 75 1.000 2.207 1.128 3.103 1.128 2.207
0.572 3.132 0.500 4414 0.565 4.653 1.128 2.207
0.365 4.600 0.333 6.622 0.376 6.205 1.128 2.207
0.157 9.658 0.250 8.829 0.282 7.756 1.128 2.207
1.213 1.109 0.125 17.657 0.141 13.961 1.128 2.207
2.916 1088 2.916 - 1721 1.645 2.061 1.493 1.103
4.431 0817 2216 6 3.000 0.679 3.873 0.771 4711 0.969 2.406
6.647 0.726  2.216 4.000 0.481 5.644 0.476 7.351 0.849 2.582
8.862 0.680 2216 8.000 0.227 12.310 0.198 16.740 0.726 2.800
17.725 0612 2216 © 1.378 2.097 1.690 2.074 1.494 1.102
1.652 1460  1.108 7 1.000 2.204 1.131 3.147 1,194 3.147 1.131 2.204
0.653 4411 0814  2.535 0.500 4.408 0.566 6.293 0.895 3.147 1.131 2.204
0.452 7.083 0612  2.848 0.333 6.612 0.377 9.441 0.796 3.147 1.131 2.204
0209 17.164 0428  3.281 0.250 8.815 0.283 12.588 0.747 3.147 1.131 2.204
1.350 2.010 1.488  1.106 0.125 17.631 0.141 25.175 0.671 3.147 1.131 2.204

® 1.741 1.677 2.155 1.703 2.079 1.494 1.102

n mb\mw H;u OM st Q» Nkm Qa hd

Ly Ly
L
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	HF filters
	types of Hf filters
	1) LC filters;
	2) Continuous time gm-C filters;
	3) Mechanical filters;
	4) Ceramic filters;
	5) Quartz filters;
	6) Surface Acoustic Wave (SAW) filters.

	Attenuation, phase, and group delay
	A filter is a linear circuit that discriminates between different frequencies. The frequencies that are not affected by the filter make up the passband, while the attenuated frequencies make up the stopband. Since the filter is linear, the transfer f...
	(4.1)
	(4.2)
	(4.3)

	Classes of transfer functions
	Filters can be classified according to their attenuation characteristics:
	1) Low-Pass Filter = LPF;
	2) High-Pass Filter = HPF;
	3) Band-Pass Filter = BPF;
	4) Band-Reject Filter = BRF.
	Fig 4-1: The principal attenuation characteristics.


	filter specifications
	Within the set of specifications of a filter, such as the dimensions, the power consumption, the functional temperature range, etc., the most important is certainly the specification of the attenuation characteristics or in certain cases the group de...
	Fig 4-2: Different specifications of a filter.

	Normalization and low-pass prototype
	The design of a filter can be broken into two steps: the approximation step followed by the realization (or implementation). The approximation step involves the search for a transfer function that satisfies the imposed specifications, while the reali...
	Fig 4-3: Normalized tolerance plot.

	low-pass « high-pass Transformation
	It is easy to transform a low-pass filter to high-pass by the simple inversion of the frequency axis, which corresponds to the following frequency transformation:
	(4.4)
	Fig 4-4: Obtaining the LPP from the HP tolerance plot.
	Fig 4-5: Transformation of elements of the LPP filter.

	low-pass « bandpass Transformation (1/4)
	In the case in which the tolerance plot of a bandpass filter specifies a constant and equal attenuation in the stopbands, the transformation low-pass « bandpass can be used:
	(4.5)
	(4.6)
	(4.7)
	(4.8)

	low-pass « bandpass Transformation (2/4)
	Fig 4-6: Low-pass « bandpass transformation.

	low-pass « bandpass Transformation (3/4)
	Consider the tolerance plot of the bandpass filter shown in Fig. 4-7 a).
	Fig 4-7: Modification of the initial tolerance plot of the bandpass filter for the establishment of the specifications of the low-pass prototype filter.
	1) The attenuation in the stopbands must be leveled to the maximum attenuation (cf Fig. 4-7 b));

	2) The stopband edges must be modified such that they satisfy the geometric symmetry property of the transformation. To do this, we first calculate the center frequency and then evaluate . If , the stopband edges are ws1 and w2 . If , we must calcula...
	(4.9)


	low-pass « bandpass Transformation (4/4)
	The low-pass « bandpass transformation described by Eqn. 4.5 corresponds to a reactance transformation that can be directly applied to an LC filter. Knowing the center frequency w0 and the bandwidth B of the bandpass filter, one can then replace the...
	Fig 4-8: Application of the low-pass « bandpass transformation.

	types of approximations
	There are several types of approximations, each having their own features. The best-known are:
	1) The Butterworth approximation: offers a very flat attenuation in the passband with a monotonically increasing attenuation in the stopband. The transition from the passband to the stopband is controlled. The phase characteristic is nonlinear, and t...
	2) The Chebyshev approximation: offers a more rapid transition from the passband to the stopband than the Butterworth, but has ripples in the passband. The attenuation increases monotonically in the stopband. The phase characteristic is highly nonlin...
	3) The Bessel approximation: offers a linear phase delay and therefore a constant group delay in the passband. However, the transition from the passband to the stopband is very gradual.
	4) The Cauer or Elliptic approximation: offers a very steep transition from the passband to the stopband, but has ripples in the passband as well as the stopband. The phase characteristic and the group delay are highly nonlinear and rippled.

	Butterworth Approximation (1/3)
	The Butterworth function is certainly the simplest of the analytical approximations. The typical shape of the Butterworth transfer function is shown in Fig. 4-9.
	Fig 4-9: Magnitude of the Butterworth transfer function.
	(4.10)
	(4.11)
	(4.12)

	Butterworth Approximation (2/3)
	The function given by Eqn. 4.10 is plotted for and for different values of N in Fig. 4-10.
	Fig 4-10: Magnitude of the transfer function for .
	(4.13)
	(4.14)

	Butterworth Approximation (3/3)
	It can be shown that the poles of the transfer function H(W) are located on a circle as indicated in Fig. 4-11.
	Fig 4-11: Poles of the Butterworth transfer function in the normalized s plane (7th order).
	(4.15)
	1) Normalize the tolerance plot by dividing the frequency by the filter’s cutoff frequency. This permits Ws to be determined;

	2) Determine the order according to Eqn. 4.14;
	3) Calculate the value of e using Eqn. 4.12.

	Chebyshev Approximation (1/3)
	Fig. 4-12 shows the typical shape of the magnitude of the transfer function of even-order and odd-order Chebyshev filters. In contrast with the Butterworth filter, the Chebyshev filter has ripples in the passband, followed by a monotonic decrease in ...
	Fig 4-12: Typical transfer function shapes for a Chebyshev filter.
	(4.16)
	(4.17)
	(4.18)

	Chebyshev Approximation (2/3)
	These polynomials satisfy the following recursive formula:
	(4.19)
	(4.20)
	Fig 4-13: Chebyshev polynomials.
	(4.21)
	Which gives: (4.22)

	Chebyshev Approximation (3/3)
	Fig 4-14: Chart for choosing the Chebyshev filter order.
	(4.23)

	Comparison of Butterworth and Chebyshev approximations
	Fig 4-15: Comparison of the attenuation of 3rd order Butterworth and Chebyshev filters.

	All-pole low-pass LC FIlter (1/3)
	For both Butterworth and Chebyshev approximations, there are direct relationships between the values of the reactive components and the characteristic parameters e and N for the low- pass prototype filters in Fig. 4-16 and 4-17. In general, we would ...
	Fig 4-16: All-pole low-pass LC filters with minimum inductors.
	Fig 4-17: All-pole low-pass LC filters with minimum capacitors.

	All-pole low-pass LC FIlter (2/3)
	Butterworth
	(4.24)
	Table 4-1: Butterworth prototype filter () and wp = 1 rad/s.



	All-pole low-pass LC FIlter (3/3)
	Chebyshev
	(4.25)
	(4.26)
	(4.27)
	(4.28)


	Example: calculation of a third-order Chebyshev prototype filter
	We would like to find the values of the reactive elements of a 3rd order Chebyshev filter having a ripple in the passband of less than 0.1 dB, a cutoff frequency of 1 rad/s and a source resistance .
	From which:
	From which:
	Fig 4-18: Example of the calculation of a 3rd order Chebyshev prototype filter.

	surface acoustic wave (SAW) filters (1/2)
	Surface Acoustic Waves (SAWs) are a special type of elastic wave that propagates along discontinuities such as the free surface of a solid (or the separation surface between two different elastic media). They were discovered theoretically by Lord Ray...
	Fig 4-19: Propagation of a surface wave.

	surface acoustic wave (SAW) filters (2/2)
	Fig 4-20: Diagram of a SAW filter.

	transfer function of a SAW filter
	For a regular comb, the elastic excitations due to different finger pairs add together to give a synchronous frequency . If the frequency moves away from this value, the interference is no longer completely constructive and the resulting signal dimin...
	(4.29)
	Fig 4-21: Weighting the impulse response.

	transducer equivalent circuit
	Fig 4-22: Transducer equivalent circuit.
	(4.30)
	with: (4.31)

	Reflections and insertion losses
	Fig 4-23: Reduction of intratransducer reflections.

	Limits and applications of SAW filters
	Fig 4-24: Response of a SAW filter for IF TV.

	Other SAW filter structures
	The preceding description of surface wave filters implies an ideal model in which the waves propagate freely, without reflection. In practice, we seek to design devices in which these conditions are roughly satisfied. Nevertheless, there is another a...
	a) arrays of mechanical grooves: Regular grooves can be etched by ions on a crystal surface; an array made of ZnO or silica, or even metal can also be deposited. Thus, each line of discontinuity will be the source of a reflected wavelet. If the refle...
	b) conductor arrays: Reflections from arrays of conductors are more subtle. The incident waves induce a current in the conductors, which then behave as transducers whose excitation is caused by the incident wave. The waves re-emitted in this way by t...

	SAW resonator filters
	By placing two transducers inside a surface wave cavity closed by two reflectors of one of the types decribed above, we obtain a resonator filter.
	Fig 4-25: Example of a SAW resonator filter.
	multistrip array filters

	reflective array compressor SAW filters
	Fig 4-26: Reflective array dispersive filter.
	Active SAW filters
	Table 4-2: Butterworth prototype filter (, ).
	Table 4-3: Chebyshev prototype filter (Ap £ 0.01 dB).
	Table 4-4: Chebyshev prototype filter (Ap £ 0.1 dB).
	Table 4-5: Chebyshev prototype filter (Ap £ 0.5 dB).
	Table 4-6: Chebyshev prototype filter (Ap £ 1 dB).



